Leader Incentives and Civil War Outcomes

Alyssa K. Prorok
Assistant Professor
University of Iowa
341 Schaeffer Hall
Iowa City, IA 52242
319-335-3835
alyssa-prorok@uiowa.edu

Short Title: Leaders and Civil War
Keywords: Civil War, Leaders, War Outcomes
Word Count: 8,797

Abstract: This paper examines the influence that rebel and state leaders have on civil war outcomes, arguing that incentives to avoid punishment influence their strategic decision-making during war. Leaders in civil war face punishment from two sources: internal audiences and opponents. I hypothesize that leaders who bear responsibility for involvement in the war have a higher expectation of punishment from both sources following unfavorable war performance, and thus have incentives to continue the fight in the hope of turning the tide and avoiding the negative consequences of defeat. These incentives, in turn, make leaders who bear responsibility more likely to fight to an extreme outcome and less likely to make concessions to end the war. These propositions are tested on an original dataset identifying all rebel and state leaders in all civil conflict dyads ongoing between 1980 and 2011. Results support the hypothesized relationships between leader responsibility and war outcomes.

I thank Benjamin Appel, Kanisha Bond, Sarah Croco, Christian Davenport, Laura Dugan, Caroline Hartzell, Paul Huth, Nick Grossman, Michele Leiby, Will Moore, Bill Reed, Idean Salehyan, Megan Shannon, Jessica Stanton, Alex Weisiger, and colleagues at Iowa for their comments and suggestions. I would also like to express gratitude to the anonymous reviewers and editor at AJPS for their helpful recommendations. Data collection for this article was funded in part by the University of Iowa. Replication files are available at the AJPS Data Archive on Dataverse (http://dvn.iq.harvard.edu/dvn/dv/ajps), DOI:10.7910/DVN/29933.
Civil conflict has, since WWII, been the most common, persistent, and deadly form of violence in the international system. Given its prevalence and costliness, scholars have devoted increasing attention to civil war termination and outcome. This research provides valuable insights into country and dyad-level determinants of termination, including state characteristics, strength of combatants, costs of war, economic incentives for fighting, and design of settlement agreements (Collier, Hoeffler, and Söderbom 2004; D. Cunningham, Gleditsch, and Salehyan 2009; Hartzell and Hoddie 2007; Walter 2002).

Historical and contemporary accounts, however, frequently stress the role of the individual in conflict processes, ascribing significant agency to state and rebel leaders. Reports from the 2006-2008 Juba peace process in Uganda, for example, attribute significant responsibility to LRA leader Joseph Kony for derailing the process, as he refused to attend talks or sign the final agreement (Gettleman and Okeowo 2008; Hendrickson and Tumutegyereize 2012; Machar 2008). Similar blame has been placed on leaders like Bashar Assad in Syria and Jonas Savimbi in UNITA’s conflict with Angola (The Economist 2014; Weigert 2011). Are these examples indicative of a broader pattern? Do rebel and state leaders consistently influence conflict processes in ways that alter our expectations about the termination and outcome of conflict? If so, existing research’s failure to examine leaders’ influence on conflict processes is a critical omission; failure to account for the role of leaders renders existing explanations incomplete at best, and at worst, inaccurate.

This project, therefore, develops a novel theory of civil conflict termination that explicitly incorporates leaders’ incentives. It moves beyond the unitary actor assumption that characterizes most research on civil war, instead recognizing that rebel and state leaders’ goals often conflict with those of the groups they represent. Specifically, leader behavior is driven by incentives to
avoid punishments such as loss of power, exile, imprisonment, or death. Variation in expectations of punishment is, in turn, determined by two factors: the leader’s war performance and whether or not he bears responsibility for the war. Leaders viewed as responsible face a higher expectation of both internal and opponent-inflicted punishment following unfavorable war outcomes, and as a result, have a lower utility for settlement on compromise or losing terms than leaders who can avoid responsibility for the war. Responsible leaders, therefore, face incentives to continue a losing war in a ‘gamble for resurrection’, through which they hope to turn the tide and avoid punishment (Downs and Rocke 1994). I hypothesize that groups led by responsible leaders will be unwilling to settle on compromise terms, and will be more likely to experience extreme outcomes (major victory or total defeat), than those led by non-responsible leaders.

These hypotheses are tested using extensive original data on the identity, responsibility, and post-conflict fate of rebel and state leaders in all civil conflict dyads between 1980 and 2011. Results demonstrate that leaders who bear responsibility for the war are less likely to make concessions on central issues and are more likely to experience extreme outcomes. Tests of the underlying mechanism also demonstrate that responsible leaders are more likely to be punished following poor war performance than non-responsible leaders. Finally, additional analyses show that the results hold for both rebel and state combatants, for replacement leaders only, and are robust to alternative modeling strategies, inclusion of additional controls, alternative specifications of key variables, and tests for endogeneity.

This project makes several important contributions to scholarship. First, by unpacking the black box of rebel organizations, it represents an important step in the disaggregation of civil

1 Responsibility is attributed to leaders in power at the start of the conflict (first leaders), and to those who share political connections with first leaders. This relates to the concept of culpability (Croco 2011), and is discussed in greater detail below.
war studies, which has moved, over the past decade, from country-level (Fearon 2004; Hegre 2004) to dyad and group-level analyses (D. Cunningham, Gleditsch, and Salehyan 2009; K. Cunningham 2011; Thyne 2012). Second, by recognizing that leaders have incentives independent of the groups they represent, this project demonstrates that existing dyad and country-level analyses are valuable but incomplete. At times, leaders’ incentives eclipse conflict-level factors, and wars that existing explanations predict should end via compromise settlement instead continue on to a military end. Thus, this project improves upon existing models, explaining more of the variation in conflict outcomes. It also provides a compelling explanation for remaining puzzles in the literature, such as why some combatants, like UNITA in its conflict against Angola, reject compromise at one time only to accept similar terms months or years later.

This project also has implications for existing theories in the literature. It provides a potential explanation for why high costs of conflict do not consistently produce negotiated settlement (Walter 2002): leaders facing punishment may forego negotiations and continue fighting explicitly because war is costly. Additionally, it identifies a potential source of variation in the severity of commitment problems, which are particularly acute for responsible leaders, who face a heightened risk of punishment associated with concessions-making. This project also modifies theories from international relations to fit the civil war context. Punishment, usually conceived of as loss of political power (Bueno De Mesquita et al. 1999; Croco 2011), is broadened to incorporate alternate forms (fractionalization, exile, imprisonment, death) that are unique to and/or more prevalent during civil war, but are less frequently theorized (Goemans 2000). Additionally, while the interstate literature focuses exclusively on internal (domestic)
punishment, I conceptualize punishment as deriving from both internal and opponent-based sources, both of which are common during civil war.

Finally, this project makes important data contributions by developing an original dataset on state and rebel leaders, providing information on each leader’s time in power, responsibility for the war, and post-tenure fate. Additionally, it develops a novel coding scheme for war outcomes that identifies the outcome’s favorability for each warring actor relative to its original war aims. By better accounting for what each actor achieved, this measure provides a more accurate account of how satisfied each is at war’s end.

This article proceeds by first examining gaps in existing literature. The theoretical argument is then elaborated, focusing on leader incentives to avoid punishment. The original data is then discussed, and empirical results are presented. It concludes by examining the implications of the findings for theories of civil war and policies designed to end them.

Existing Literature

Existing research identifies several country and dyad level factors that influence how and when civil wars end. Expected utility models of war, for example, suggest that the chances of victory, costs of war, and relative payoffs from winning versus settling all influence war outcomes (D. Cunningham, Gleditsch, and Salehyan 2009; Mason and Fett 1996; Mason, Weingarten, and Fett 1999; Walter 2002). Others focus specifically on factors expected to prolong conflict. Lootable resources, for example, make conflict profitable and thus difficult to terminate (Collier 2000; Lujala 2010; Ross 2004; Collier, Hoeffler, and Söderbom 2004). Commitment problems also prolong civil wars, even when both sides prefer settlement, as fear of exploitation undermines the ability of combatants to lay down weapons (Fearon 1994a; Fearon
Existing research shows that third party enforcement (Walter 2002) and power-sharing provisions (Hartzell and Hoddie 2003; Hartzell and Hoddie 2007; Mattes and Savun 2009) can ameliorate commitment problems, facilitating settlement.

These theories provide important insights into the determinants of civil war termination at the country and dyad level. Because they treat rebel and state combatants as unitary actors, however, they provide little insight into how leaders influence wartime dynamics.\(^2\) This is a critical oversight, as the data collected for this project show that 35% of all civil war leaders are punished as a result of war. Given this high level of vulnerability, it is likely that leaders take the threat of punishment seriously as they make wartime decisions. And if the threat of punishment influences leaders’ decisions, then our theories about civil conflict should also account for leaders’ expectations of punishment. Failure to do so renders existing explanations inaccurate.

Take, for example, Colombia’s conflict against the EPL. This dyad was characterized by several factors shown to decrease the prospects for settlement, including imbalanced military power, other ongoing dyads, lack of third-party mediation, and no rebel political wing (D. Cunningham, Gleditsch, and Salehyan 2009; DeRouen, Bercovitch, and Pospieszna 2011; Walter 2009). Despite these obstacles, negotiated settlement was reached in 1990, just six months after two non-responsible leaders, César Gaviria Trujillo and Anibal Palacios, took power.

This example suggests that accounting for leaders’ incentives may improve our understanding of conflict outcomes. The following sections develop a theoretical argument which modifies existing models of conflict termination that rely upon a bargaining framework,

\(^2\) Two recent analyses focus on leaders (Thyne 2012; Tiernay 2013), but are limited in two respects. First, Thyne (2012) focuses only on state leaders, telling only half the story. Second, Tierney (2013) focuses on leader change rather than incentives. In a secondary analysis, he focuses on ‘culpable’ state leaders, but his conception of culpability is limited, as it only incorporates first leaders. This project improves upon these studies by examining leaders’ incentives, focusing on responsibility rather than tenure, and analyzing war outcomes.
by incorporating leaders’ incentives into the standard logic. Bargaining models suggest that war is costly, and, as a result, there are strong incentives for termination. Information and/or commitment problems, however, constrain actors’ abilities to effectively bargain and end their conflicts. By relaxing the unitary actor assumption, the theory developed below advances the standard bargaining logic in two ways. First, it identifies an additional barrier to settlement by recognizing that conflict is costly for the group as a whole, but continued fighting may be less costly than peace for leaders who bear responsibility for the conflict. Second, the theory helps explain variation in commitment problems, one of the key barriers to civil war settlement (Walter 2002), by demonstrating that responsible leaders have more difficulty making credible commitments to peace.

Punishment in Civil War

Existing research demonstrates that state leaders’ accountability to domestic audiences influences their wartime decision making (Bueno De Mesquita et al. 1999; Croco 2011; Goemans 2000; Weeks 2008). The critical question is whether rebel group structures allow internal audiences to similarly punish their leaders for policy failures.\(^3\) If so, poor war performance should threaten rebel leaders’ political survival and influence their wartime decision-making.

To answer this question, two issues must be considered: first, do rebel groups have identifiable leaders who exert effective control over policy, and second, can some constituency within the group coordinate to punish the leader for poor policy choices. The first of these

\(^3\) Internal audiences include individuals within the organization who can coordinate to punish the leader. The audiences’ composition is determined by the type of political system (Fearon 1994b), but leaders can be held accountable in democratic and most non-democratic systems (Gandhi and Przeworski 2007; Weeks 2008).
questions can be answered by examining rebel groups’ organizational structures. Like states, rebel groups vary significantly in terms of their institutions and organization. Some, like UNITA and Liberia’s NPFL, are clearly hierarchical, led by strong-man, charismatic leaders with tight control and personalist tendencies. Others, like the JVP in Sri Lanka and the SNM in Somalia, have clear political structures headed by central governing bodies with an appointed or elected head who has final decision-making authority. In both types of groups, a leader is identifiable and has clear political/military authority.

Finally, there are some groups with less hierarchical, more cellular organizational structures. While control is less centralized, these groups still often have identifiable central leadership bodies that exert moderate control over activities of the group’s constituent cells. For example, leaders of the OPM in Indonesia, despite the group’s loose organizational structure, were able to establish group policy (Elmslie 2002). Ultimately, only a very small number of rebel groups lack clear leadership hierarchies (e.g. Algeria’s Exile and Redemption or Libya’s NTC in the first weeks of conflict) because they are made up of truly autonomous cells or uncoordinated mass movements.4

Regardless of organizational characteristics, rebel leaders in any group must maintain the support of group elites in order to maintain power. Leaders are vulnerable to punishment if the group’s political/military elite enjoy a degree of autonomy from the leader; that is, if the leader does not control appointments and promotions within the group, or if high-ranking rebels’ fates

4 The theory developed herein does not readily apply to groups lacking identifiable leadership, but these groups make up only about 1.5% of cases. The NSA dataset corroborates this finding; over 90% of rebel groups in the NSA have a clear central command, and nearly 90% of those exert moderate to high control over the group’s constituent parts (D. Cunningham, Gleditsch, and Salehyan 2013). Many groups lacking clear command structures in NSA, furthermore, are likely coded that way due to data limitations. See discussion of missing data in the Supplementary Information (SI) for more information.
are not tied to the leader’s (Geddes 2003; Weeks 2008). Elites who lack such autonomy cannot credibly threaten to punish the leader, as their own fates are directly tied to his (Weeks 2012).

In practice, different rebel group structures facilitate different types of punishment. Leaders of dispersed, cellular organizations, when punished, often lose power as factions within the group break off, causing the locus of power within the organization to shift to a rival. This happened when power shifted away from the OPM’s first leader Seth Rumkorem towards his rival Jacob Prai as a result of a split in the organization (Szajkowski 2004). Punishment in more hierarchically organized rebel groups, on the other hand, can occur via institutionalized processes like elections or via ‘extra-legal’ processes like coups. Top commanders of Palipehutu-FNL in Burundi, for example, ousted rebel leader Cossan Kabura in a 2001 bloodless coup (Agence France Press, Feb 23, 2001), while groups such as the ONLF in Ethiopia, SNM in Somalia, and ABSDF in Myanmar all held party congresses where leaders were voted in and out of power.

Even personalist leaders are not immune to fears of punishment. Evidence suggests, for example, that UNITA elites were not dependent upon leader Jonas Savimbi for their positions within the organization, but were instead elected at Party Congresses, and that organizational power therefore did not derive directly from loyalty to Savimbi (James 1992).

This brief discussion suggests that the vast majority of rebel groups have organizational structures that provide opportunities for leader punishment. More generally, in the data collected for this project, approximately 22% of rebel leaders are punished internally as a result of war. This percentage is remarkably similar to that for state leaders (19%), suggesting that both rebel and state leaders face a non-trivial threat of punishment from their internal audiences.

State and rebel leaders also face an additional threat, deriving from the fact that combatants share a single national territory, fight in close proximity to their bases, and frequently
employ leadership targeting strategies during civil war. Specifically, leaders are often punished by their wartime opponent, or adversary elite. The adversary elite includes the political/military leadership of the wartime opponent – those with decision-making authority on issues of security and justice during and after war. These elites decide whether to directly target their opponent’s leadership through attempts to kill, capture, or imprison top opponents.

Opponent-based punishment is a serious threat to leaders in civil war, as punishment meted out by the adversary is often severe. Victor Polay Campos of MRTA in Peru, for example, was captured by government forces in 1992 and sentenced in 2006 to 32 years in prison (Szajkowski 2004). More generally, 36% of rebel leaders are punished by their opponents, and state leaders too can be punished quite severely by rebel forces. President Premadasa of Sri Lanka, for example, was assassinated in an LTTE suicide bombing in 1993 (Szajkowski 2004). Civil war leaders thus have incentives to avoid punishment from two distinct sources: internal audiences and adversary elites.

Internal Punishment

To account theoretically for leaders’ incentives, it is useful to conceptualize the leader-constituency relationship in terms of a principal-agent framework, where constituents are the principal and the leader their agent. This highlights several characteristics of the relationship. First, leaders have interests independent of those of the groups they represent, primary among which is political survival and physical safety. Second, leaders enjoy private information regarding their own level of competence/faithfulness in executing the war and

5 State leaders are punished by rebels 6.33% of the time.
6 PA analyses in the civil war literature tend to treat leaders as principals and fighters as agents (Weinstein 2007), but interstate war literature generally does the opposite (Downs and Rocke 1994; Feaver 2005; Goemans 2000; Richards et al. 1993).
battlefield/negotiating table information. Finally, members of the internal audience prefer a leader who is competent and pursues the group’s best interests, as they fare better personally under these conditions. Internal audiences thus have incentives to punish an incompetent leader; removal improves prospects for success in war and deters leaders from acting against group interests in the future. However, because leaders have private information regarding their type, internal audiences cannot know, with certainty, whether a leader is competent or not. Audiences must assess leader competence, and decide which leaders to punish, using cues provided by observable conflict outcomes and the leader’s responsibility for the decision to go to war.

Observed war performance provides evidence regarding the leader’s type; failure to achieve stated goals suggests incompetence, while success indicates the opposite. However, the relationship between leader decisions and war outcomes is imperfect. A variety of stochastic factors likely influence the course of conflict, and because the internal audience cannot directly observe the leader’s decisions, constituents cannot be certain how much blame to attribute the leader for the war’s trajectory.

Constituents, therefore, turn to a second source of information to help distinguish competent from incompetent leaders. Specifically, the leader’s connection to the original decision to go to war, or responsibility for the war, shapes the internal audience’s assessment of leader competence. Constituents will attribute responsibility for a conflict to two types of

7 This informational advantage arises because information from the battlefield and negotiating table is limited. Even group elites have limited access to information on all military and political fronts, and the fog of war makes such information difficult to interpret.

8 Internal audiences prefer to differentiate between competent and incompetent leaders before carrying out punishment, as removal of a competent leader is inefficient (Downs and Rocke 1994). Continuity is desirable because it ensures stability in chain of command, minimizing the possibility that turnover precipitates opponent gains.

9 Richards et al. (1993) and Downs and Rocke (1994) identify policy/battlefield outcomes as the only signal constituencies have to judge leader faithfulness. I argue, instead, that leader responsibility provides a second source of information useful in judging competence.
leaders: (1) those in power at the conflict’s start (first leaders), and (2) those who come to power during the war (replacement leaders) and have political connections to the decision to fight. First leaders are responsible because they directly preside over the transition from peace to war,\(^{10}\) while replacement leaders who share political or familial connections with the first leader inherit responsibility because such connections imply influence over the decision to fight.\(^{11}\) Leaders who inherit an ongoing war upon coming to power but share no ties with the first leader, on the other hand, can concretely avoid affiliation with the decision to go to war, thereby more easily avoiding the ‘incompetent’ designation should the war go poorly.

Thus, by linking blame for war outcomes to responsibility for war involvement, internal audiences can distinguish leaders whose bad choices caused war losses (incompetent agents) from those who made sound policy choices but were undermined by the poor decisions of previous leaders (competent agents).

The Gamble for Resurrection

Internal audiences’ use of responsibility for the war as a cue to identify incompetent leaders has implications for leaders’ expectations of punishment and their subsequent conflict behavior. Specifically, leaders deemed responsible are more likely to be punished for poor war performance than their non-responsible counterparts. Internal audiences will judge the former incompetent while sparing the latter from the same fate.

\(^{10}\) Non-initiator first leaders are considered responsible because they failed to prevent war. It can be difficult to identify ‘initiators’ in civil conflicts, as both sides may have incentives to portray the opponent as the aggressor. Responsibility, therefore, is shared by both first leaders.

\(^{11}\) Existing research demonstrates that constituents attribute blame for poor policy outcomes along party lines (Cotton 1986; Erikson 1988). Specific coding rules for leader responsibility are provided below.
This implies that variation in the expectation of punishment for these two leader types drives variation in their expected utilities for termination. Responsibility for the war makes compromise costly, as adopting a conciliatory strategy involves reneging on promises made at the war’s start. Even moderate losses earn responsible leaders the ‘incompetent’ designation. This suggests that leaders deemed responsible for the war have a low utility of termination for anything less than victory, as victory is the only way to ensure political and physical survival. Responsible leaders, therefore, have incentives to continue a losing war rather than settle, as continuation provides the opportunity, however remote, to turn the tide, achieve victory, and forestall punishment. In other words, the expectation of punishment creates perverse incentives for leaders who bear responsibility for the war to become unfaithful agents and ‘gamble for resurrection’ (Downs and Rocke 1994; Goemans 2000).

The logic of this strategy is straightforward. Leaders update their beliefs about the likely outcome of the war as information comes in from the battlefield and the negotiating table. As the likelihood of victory decreases, responsible leaders become increasingly assured of punishment, as internal audiences judge them incompetent. Facing near-certain punishment, these leaders have nothing to lose by continuing the fight; while victory may not be likely, it remains possible if conflict continues. Settling on compromise terms, on the other hand, renders victory impossible and punishment likely. Responsible leaders, therefore, will go against the interests of their constituents and continue the conflict because the additional risk of punishment for doing so is marginal while the potential payoff, should they succeed, is high. In contrast, non-

12 Continuing the war is ‘unfaithful’ because constituents, who disproportionately bear the costs of war, likely prefer settlement as costs mount (Chapman and Reiter 2004; Croco 2011; Richards et al. 1993).
responsible leaders lack incentives to gamble for resurrection when faced with the prospect of compromise because their risk of punishment for such an outcome is low.13

Opponent-Based Punishment

The above discussion suggests that responsibility for the war increases incentives to gamble for resurrection. Importantly, this incentive to gamble exacerbates commitment problems with the adversary, suggesting that commitment problems, a central cause of civil war persistence (Fortna 2004; Mason et al. 2011; Quinn, Mason, and Gurses 2007; Toft 2009; Walter 2002; Walter 2004), vary in severity by leader. Specifically, leaders deemed responsible are less able to commit to ending the war or implementing settlement deals, as the settlement process threatens their political and physical survival.

Recognizing that leaders who are highly vulnerable to internal punishment are unable to commit to ending the war, adversary elites will have strong incentives to try to remove them from power in the hope that a less vulnerable (i.e. non-responsible) leader takes over.14 These incentives derive from the fact that adversary elites prefer an opponent leader who can make credible commitments to peace. Failed settlement attempts and conflict recurrence, the consequences of an inability to commit, are costly for the adversary’s leadership, as they increase their own political insecurity (Toft 2009; Walter 2002). Opponent elites are likely to suffer political costs if settlement overtures are rejected or break down during implementation (Huth and Allee 2002). Megawati Sukarnoputri of Indonesia, for example, lost elections in 2004 after

13 Behavior attributed to responsibility may instead be linked to ‘true believers’. However, variation in expectations of punishment provides a better explanation because it explains why even some hard-liners, upon coming to power, reverse course and choose to settle.

14 Targeting adversary leaders is a common component of many states’ strategies (Johnston 2012; Price 2012). I argue that combatants have greater incentives to attempt decapitation against responsible leaders.
negotiations with GAM failed: the opponent’s inability to commit undermined Sukarnoputri’s approval, resulting in loss of power. While adversary elites will not always be interested in pursuing peaceful resolution, they will prefer an opponent who can uphold promises made during negotiations, should the opportunity to settle arise.

It follows that internal incentives to gamble for resurrection actually exacerbate the threat of adversary-inflicted punishment. Adversary elites will seek to remove responsible leaders – those with incentives to gamble – in order to facilitate termination and deter recurrence. Paradoxically, the adversary’s incentive to target a responsible leader reinforces that leader’s incentives to avoid compromise. Leaders in these circumstances will avoid demobilization or contact with the opponent (e.g. Kony in Uganda), as such steps increase vulnerability (Prorok 2013). Even attending negotiations in a neutral location does not preclude punishment; Ghassemloiu, a responsible leader of the KDPI, was assassinated by Iranian agents in July, 1989 during negotiations in Austria. Facing such threats, responsible leaders will avoid settlement, seeking victory and personal security guarantees to ensure their own survival.

Because non-responsible leaders have fewer internal incentives to avoid settlement deals, they face lower expectations of adversary-inflicted punishment. These leaders are therefore more trustworthy negotiating partners, and the adversary will be more willing to envisage a post-conflict scenario in which they remain prominent political figures. The Democratic Republic of Congo’s treatment of two CNDP leaders clearly illustrates the different strategies adopted when facing responsible versus non-responsible opponent-leaders. President Kabila made a deal with Rwanda to have CNDP founder and responsible leader Laurent Nkunda arrested in January 2009. Just two months later, Kabila signed a peace deal with Nkunda’s replacement, non-responsible

15 Prorok (2013) focuses on ICC punishment, but a similar logic applies here.
leader Bosco Ntaganda, offering him a generalship in the new national army. Avoiding responsibility for the war affords a leader greater flexibility to settle with the opponent on compromise terms without the imminent threat of adversary-inflicted punishment.

Empirical Implications

The above discussion suggests that leaders who bear responsibility for the war will gamble for resurrection rather than settling when faced with dwindling prospects for victory. As a result, they will achieve victory more often than their non-responsible counterparts, who would have settled on compromise terms when the hope of victory diminished. Having stronger incentives to win, however, does not necessarily translate into victory. Factors such as relative strength, resolve, and strategy impact which gambles succeed, and some groups will end up worse off than they were before. This suggests the following:

H1: Combatant groups led by leaders who bear responsibility for the war are more likely to experience extreme war outcomes than those with non-responsible leaders.

Leaders viewed as responsible will also be unwilling to make concessions to end the war, as their fates are closely tied to the goals they establish at the conflict’s start. Compromise on central war aims will be viewed as evidence of the responsible leader’s incompetence, increasing the likelihood of punishment.\(^{16}\) Non-responsible leaders, on the other hand, will be unlikely to gamble for resurrection when prospects for victory decline, as they can distance themselves from

\(^{16}\) I focus on central war aims because constituents are less likely to view minor/procedural concessions as failures worthy of punishment. Figure B in the SI presents a robustness check including minor concessions.
the first leader’s original aims. This reduces the threat of internal and adversary-based punishment, thereby allowing for compromise.

H2: Combatant groups with leaders who bear responsibility for the war are less likely to make concessions on central war aims than those with non-responsible leaders.

Research Design

The above hypotheses are tested using original data on rebel and state leaders in all civil conflict dyads (1980-2011) in the Non State Actor Dataset (D. Cunningham, Gleditsch, and Salehyan 2013). A rebel leader is identified as the individual who exerts ultimate decision-making authority over major group policies. Thus, individuals are coded as leaders if they hold the highest-ranked position within the group or if sources agree that they are the key power holder in the organization, setting policy for the group. A full discussion of coding rules for identifying rebel leaders, including examples, is included in the SI, pages 1-6.\(^{17}\) Data on state leaders was adapted from the ARCHIGOS dataset (Goemans, Gleditsch, and Chiozza 2009), which provides information on all state leaders from 1875-2004. ARCHIGOS defines ‘leader’ by emphasizing power over title, excluding figureheads. As such, this definition corresponds well with the criteria established to identify rebel leaders. Because these data are updated only through 2004, additional research was done to identify state leaders between 2005 and 2011.

\(^{17}\) A variety of sources were consulted, including: news databases such as Factiva, Lexis Nexis, and Keesings, secondary sources on specific conflicts or groups (Martinez 2000; O’Brien 1999), encyclopedic sources on rebellion and terrorism (Szajkowski 2004), online databases such as the UCDP Database and the START Center Database, and numerous primary sources, including IO, government, and rebel documents where available.
The resulting dataset includes 1279 state and rebel leaders in 331 civil war dyads (384 conflict episodes). Of these, 758 (59.27%) are state leaders and 521 (40.73%) are rebel leaders. The combatant groups in the dataset range from having 1 to 12 wartime leaders. These leader-level data were used to create a group-level dataset for analysis, which includes one observation per combatant, per dyad and uses information on the leader in power at termination. Tests of the punishment mechanism presented below use the full leader-level dataset.

War Outcomes

Empirical analyses of civil war generally group outcomes into broad categories, including military victory, negotiated settlement, truce or treaty, and low activity, coded at the conflict or dyad level (Brandt et al. 2008; DeRouen and Sobek 2004; Kreutz 2010; Mason and Fett 1996; Mason, Weingarten, and Fett 1999; Toft 2009). While intuitive, these broad categories are inappropriate for the current project, which argues that leaders are likely to refuse settlement on terms that leave them open to punishment. Testing this proposition requires identifying the favorability of a given outcome for each combatant involved. Broad categories such as negotiated settlement and low activity mask important variation in favorability that may critically affect a leader’s expectation of punishment.

For example, Mauritania and POLISARIO signed a peace agreement in 1979, in which Mauritania renounced claims to Western Sahara, recognized Polisario as the Saharawi people’s representative, and agreed to withdraw troops from disputed territory. Simply coding ‘negotiated settlement’ fails to capture the fact that this agreement was favorable for POLISARIO but
unfavorable for Mauritania.18 Importantly, a leader who bears responsibility for the war should willingly settle for the terms received by POLISARIO, but should be unwilling to settle for those received by Mauritania. Simply coding a negotiated settlement, therefore, generates indeterminate predictions regarding the impact of leader responsibility on outcomes.19 Existing outcomes data is therefore not ideally suited for use in the current analysis. I instead develop a new coding scheme for war outcomes that scores the favorability of the outcome for each actor, relative to its original war aims and the prewar status quo, on a seven point scale from 3 (total victory) to -3 (total loss). Detailed coding rules are presented in the SI, pages 9-16. I then create a dummy variable for Extreme Outcomes, which is coded 1 if the actor achieves all war aims (total or major victory) or suffers a total defeat, zero otherwise. This dummy variable captures all instances in which a group either achieves all war aims or achieves no aims and is militarily defeated.20 Two-hundred thirty-six combatant s (39\%) experience extreme war outcomes. This coding scheme overcomes the limitations in existing measures discussed above. Returning to the Mauritania example, what was previously coded a negotiated settlement for both actors is now coded a major victory for Polisario and a major defeat for Mauritania.21

18 Outcome heterogeneity is also problematic among conflicts ending via ‘low activity’ (D. Cunningham, Gleditsch, and Salehyan 2009).
19 Despite this limitation, I reran the main analysis using an existing war-outcome coding scheme and a dyad unit of analysis. This robustness check is discussed below.
20 As a robustness check, I reran the analysis using alternate cutoffs to determine extreme outcomes. Results, presented in the SI, remain consistent.
21 Because two observations are included per dyad (one government, one rebel), there may be concern over non-independent outcomes within dyads. However, because outcomes are coded relative to one’s original war aims rather than relative to the opponent, there is substantial variation; in 26\% of dyads, rebel and state actors receive opposite codings on the Extreme Outcomes DV, and 13\% receive opposite codings for Concessions. Thus, extreme outcomes or concessions for one side do not necessitate a similar coding for the other actor. Two robustness checks further address this issue. First, I run the analysis separately for rebels and governments. Second, I run a bivariate probit model, which simultaneously predicts outcomes for rebels and governments and accounts for correlations in their outcomes. Results are presented in the SI.
Concessions

Testing H2 requires a measure of whether or not a group makes concessions at termination. While conflicts that end through negotiated settlement generally involve concessions-making by at least one party, the measure developed here is novel because it identifies which actors make concessions to end the conflict. Specifically, groups are identified as making concessions if they explicitly compromise on central issues at stake in the war. Explicit compromise is coded if the group makes a direct statement conceding on central war aims, or if it signs an official settlement agreement through which it implicitly gives up central goals. Antonio Bento Bembe of FLEC-R, for example, signed a peace agreement with the Angolan government in 2006 through which he officially recognized Angola as a unitary and indivisible state, thereby implicitly renouncing separatist claims for control over Cabinda. The concessions variable is coded 1 if the leader makes concessions on central issues at stake in the war, 0 otherwise. One hundred twenty-eight groups (21%) receive a 1 for concessions.

Leader Responsibility

Leader responsibility for the war is measured as a dummy variable, coded 1 if the leader is responsible and 0 otherwise. All first leaders, those in power at the conflict’s start, are coded responsible. Additionally, replacement leaders with direct political connections to the first leader are considered responsible. Responsibility transfers along political party lines in democracies (Cotton 1986), and to family or political inner circle members in non-democracies (Croco 2011). Replacement state leaders are therefore considered responsible if, at the war’s

\[\text{Coding leader responsibility requires precisely identifying conflict start dates. I use the date of the first battle death, as identified by the UCDP conflict encyclopedia, for this purpose.}\]
start, they are members of the first leader’s 1) political party, 2) cabinet or political/military inner circle, or 3) family. Ali Hussain Kafi, for example, was the second leader in Algeria’s conflict with the MIA/FIS/AIS. Kafi is considered responsible because he was one of five members of the High Committee of State, Algeria’s collective presidency, under first leader Mohammed Boudiaf.

For rebel leaders, responsibility transfers to replacement leaders who are co-founders of the organization, family members of the first leader, or who hold high-level positions within the rebel group at the conflict’s start. These connections are expected to generate attributions of responsibility analogous to those experienced by replacement state leaders. The key factor, as with state leaders, is the replacement leader’s position within the organization at the conflict’s start, and therefore his connection to the decision to fight. Second leader of FRELILN Nicalau Lobato is coded responsible, as he was a founding member of the organization and its Vice President under Xavier do Amaral during the conflict’s first two years.

Finally, leaders are coded as non-responsible if they inherit an ongoing war and (1) share no political or familial ties with the first leader and (2) held no position of power within the rebel organization or state at the conflict’s start. Based on these coding rules, 945 (75%) leaders are coded responsible and 320 are not; among leaders in power at termination, 495 (80%) are responsible and 122 are non-responsible. Additional details on the coding rules for this variable are presented in the SI, pages 6-9.

Several alternate specifications of responsibility are included in the SI, including a three-category variable, interactions with tenure and battle deaths to assess whether responsibility’s impact diminishes over time or as costs grow, and alternate codings based upon different conventions for conflict start dates. I also recode leader responsibility to account for whether or
not the first leader was personalist. In personalist regimes, the leader successfully limits his “supporters’ influence on policy and personnel decisions” (Geddes 1999, 123). This has direct implications for leader responsibility, as the key to transferring responsibility from one leader to the next is the perception that the new leader influenced the decision to initiate conflict. In regimes organized around a single strong-man, audiences may attribute sole responsibility to the first leader, sparing replacement leaders even if they held high-ranking positions at the conflict’s start. Results for all of these robustness checks are consistent with the main results, and are discussed in the SI (Figures C-E).

Several factors found to influence conflict outcomes in existing literature are controlled for, including combatants’ relative strength, number of conflict dyads, duration of rebel alliances, mediation, third party intervention, the incompatibility (territory vs. government), leader wartime tenure, rebel political wing, and democracy (D. Cunningham, Gleditsch, and Salehyan 2009; Gent 2008; Regan and Aydin 2006; Thyne 2012; Walter 2002; Akcinaroglu 2012). Measurement information and results for these controls are discussed in the SI, as are models including additional controls for conflict duration, casualties, and natural resources.

Results and Discussion

This section reports the results of logistic regression analyses run on the group-level dataset discussed above. Robust standard errors are clustered on the dyad to account for non-independence across observations. Models 1 and 2 in Figure 1 present the results for Extreme Outcomes and Political Concessions, respectively. Coefficient estimates are represented by a dot, while 95 percent confidence intervals are represented by lines surrounding each point.

23 Fourteen observations are excluded as duplicates because of multilateral settlements. Eight fewer observations are included in Model 1 due to missing outcome data.
estimate. Confidence intervals that do not cross zero indicate significance in a two-tailed test at a p-value of 0.05. Control variables generally behave as expected, and, due to space constraints, are discussed in the SI. Model 1 demonstrates that leader responsibility for the war significantly increases the likelihood of extreme outcomes, supporting H1, while Model 2 indicates that leader responsibility significantly decreases the likelihood of political concessions. As predicted (H2), leaders who bear responsibility for the war are significantly less likely to concede on central issues to end the conflict.

[Figure 1 Here]

To demonstrate the substantive impact of leader responsibility, Figure 2 presents predicted probabilities and first differences for extreme outcomes and political concessions when moving from non-responsible to responsible leaders, holding all controls at mean or modal values. As Panel A shows, the likelihood of an extreme outcome increases from 13% to 54% when moving from non-responsible to responsible leaders. Conversely, the likelihood of concessions falls from 39% to just 12% when moving from a non-responsible to a responsible leader. First differences presented in Panel B show that the probability of an extreme outcome increases by 41 percentage points (315%) when moving from a non-responsible leader to a responsible leader (left-hand side), while the probability of concessions decreases by 27 percentage points (69%) when moving from a non-responsible to a responsible leader (right). These first differences are both significant at a p-value of 0.05, as indicated by the 95 percent confidence intervals surrounding each. They are also substantively meaningful, exerting an influence on par with key control variables such as mediation and relative strength (see discussion in SI).

24 Quantities of interest are estimated using Clarify (Tomz, Wittenberg, and King 2003).
Several robustness checks provide further support for these results. First, separate rebel and state analyses and a bivariate probit model show that the results hold for both rebel and state combatants, and when accounting for correlations across outcomes within dyads (SI Figure/Table A). Second, the results hold for replacement leaders only, suggesting that the results are not simply an artifact of the difference between first and replacement leaders (SI Table C). Third, the results are robust to alternative specifications of the dependent variables (SI Figure B) and of leader responsibility (SI Figure C). Interactions of responsibility with tenure and with battle deaths (SI Figures D and E) show that even in long, costly wars, responsibility still impacts how a leader will end his/her war. The results are also robust to inclusion of additional controls, including conflict duration, casualties, and natural resources (Table I in SI). Additionally, to ensure comparability to existing war outcomes analyses, the SI presents results using a traditional outcome measure coded 1 for negotiated settlement, 2 for military victory, and 3 for low activity. I expect negotiated settlement to be less likely than victory when responsible leaders hold power, and Table B in the SI confirms this expectation. These results draw a clear link between the paper’s main results and existing war outcomes research.

Finally, model fit diagnostics indicate that the models presented above are well-specified, performing better than baseline models excluding leader responsibility. Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) statistics help assess model quality, with lower scores indicating better performance. The baseline Extreme Outcome model’s AIC is 693, but drops to 634 in the model of interest, while BIC decreases from 736 to 681. The same occurs for the Concessions model (AIC from 506 to 469, BIC from 550 to 517). Each model’s
percentage correctly predicted increases with the addition of leader responsibility, and ROC scores also increase from 0.73 to 0.79 for Model 1 and from 0.78 to 0.81 for Model 2.

Testing the Mechanism

Overall, these results provide strong support for the paper’s central hypotheses. However, they tell us little about the underlying casual mechanism: does the threat of punishment drive leaders’ wartime decision-making? If the theoretical argument is plausible, responsible leaders should be more likely than non-responsible leaders to face punishment when they perform poorly in war (Hypothesis 3).

This hypothesis is tested using original data on the fate of each leader in the dataset. Leaders can be punished by internal audiences or wartime opponents, and punishment can take a variety of forms. The analysis uses a dummy variable, coded 1 if the leader experiences any of the following as a result of the war: 1) major fractionalization of the group, 2) loss of political power/office, 3) exile, 4) imprisonment, or 5) death. Punishment is only coded if a majority of sources agree that the war was an underlying or precipitating cause of punishment. Based on these coding rules, 415 leaders in the dataset are coded as experiencing war-related punishment.

Because leader responsibility’s impact on punishment is expected to be conditional upon war performance, testing H3 requires interacting leader responsibility with war performance. No existing datasets provide cross-national information on civil war combatants’ performance over

25 This analysis includes 1100 leader observations. Leaders presiding over ongoing wars are excluded.
26 Major fractionalization is coded when power within the organization shifts toward a new leadership, marginalizing the former leader. Loss of political power is coded when leaders lose their position but suffer no additional consequences. Exile is coded for leaders who are forced to leave the country. Imprisonment is coded for leaders who are incarcerated as a result of the war, and death for those killed as a result of the war.
27 This is an important departure from existing literature (e.g. Goemans 2000), which codes punishment if a leader loses power within a year of war’s end. Tests accounting for punishment severity and treating rebel and state leaders separately produce consistent results (SI Figure F).
time. I therefore created an original measure of war performance at tenure end, coding each leader’s performance as poor (-1), status quo (0), or favorable (1). Poor performance is assigned to leaders who suffered significant setbacks on the battlefield or made substantial concessions. Status quo performance is coded if a group failed to gain but also avoided military and political setbacks. Favorable performance is assigned to leaders who achieve substantial battlefield success and/or concessions. Three-hundred-fifty-nine leaders (31%) receive a -1, 511 (45%) receive a 0, and 272 (24%) receive a 1. Controls for casualties, leader tenure, whether the leader is based abroad, term limits, and transitional leaders are included in this analysis.

Logit results, as expected, show that the coefficient estimate for leader responsibility is positive while that for war performance is negative (SI Table F). However, because these variables are interacted in a non-linear model, neither sign nor significance can be discerned from coefficient estimates alone (Ai and Norton 2003). I therefore turn to first differences, presented in Figure 3, to determine the impact of responsibility on the probability of punishment, conditional on war performance. Figure 3 provides clear support for H3. Moving from the baseline non-responsible leader to one who bears responsibility for the war significantly increases the likelihood of punishment if that leader’s performance is poor or status quo. Responsibility for the war increases the likelihood of punishment for poor performers by 37 percentage points while increasing the probability of punishment by 17 percentage points for status quo performers.

28 UCDP’s GED dataset (Melander and Sundberg 2013), for example, is only available for Africa since 1989.
29 The situation when the leader leaves office is compared to that one/two years prior, thus capturing recent performance, which likely has a greater impact than more distant successes or failures. For leaders in power less than one year, the battlefield situation at tenure start is compared to that at tenure end.
Leader responsibility, however, has no significant impact on the likelihood of punishment if a leader performs well. Leaders who perform well have a low probability of punishment, with no significant difference between responsible and non-responsible leaders. By confirming the underlying mechanism presented above, these results bolster the main results; leaders who bear responsibility for the war are indeed more sensitive to the threat of punishment, which, in turn, affects their termination decisions.

[Figure 3 Here]

Potential Endogeneity of Leader Responsibility

If non-responsible leaders are more likely to come to power when the war is going poorly, and are therefore more likely to make concessions, the observed impact of leader responsibility may be biased by endogeneity.\(^\text{30}\) It is possible that poor performance increases the likelihood of leader change. Less clear, however, is whether war performance systematically affects the responsibility of replacement leaders. An overview of the data indicates that leaders who lose office because of poor performance are often replaced by responsible successors, suggesting that endogeneity may not be a serious problem. Ne Win of Myanmar, for example, was replaced by Sein Lwin in 1988 after Win was forced to step down due to war-related economic policies. Lwin, like Ne Win, bore responsibility for the war due to his high-ranking post at the conflict’s start.

More generally, 49% of replacement leaders who came to power while the war was going poorly are responsible, compared to 48% who came to power under status quo or favorable conditions. These similar percentages suggest that replacement leaders coming to power while the war is going poorly are not systematically more likely to be non-responsible. However,\(^\text{30}\) Omitted variables may be correlated with responsibility and the error term.
further testing is necessary to systematically rule out endogeneity bias. The SI presents additional analyses addressing this threat to causal inference. Using events data from UCDP-GED (Melander and Sundberg 2013) to create a monthly war-performance measure, I find that poor performance does not significantly increase the likelihood of a non-responsible leader taking power, thus providing further evidence that endogeneity is not a serious concern. Results are discussed in the SI (Tables D and E).

Conclusion

In early 1996, faced with a faltering peace process, a splintering organization, and an opponent intent on his capture, UNITA leader Jonas Savimbi told UN representatives that he feared for his own well-being, stating “Before I had prestige to protect me, but it is being lost” (Weigert 2011, 124). This candid statement from the usually unflappable leader provides a glimpse of what, I argue, is a pervasive concern underpinning the strategic decision-making of rebel and state leaders during civil war. Fear of internal and opponent-based punishment, and the desire to avoid it, influences the wartime decisions of leaders and as a result, their groups’ war outcomes.

This paper argued that leaders’ incentives to retain political power and avoid punishment are important determinants of combatant wartime behavior, and further, leaders who bear responsibility for the war face a higher expectation of punishment following unfavorable outcomes than their non-responsible counterparts. This threat of punishment results in a lower utility for settlement on unfavorable terms. Leaders who bear responsibility for the war, as a result, have perverse incentives to extend losing wars in a gamble for resurrection, ultimately leading to more extreme outcomes and unwillingness to make concessions.
Empirical results demonstrate that leaders deemed responsible for war are significantly more likely to experience extreme outcomes and are less likely to make concessions to end conflict. Further, responsibility for the war significantly increases the likelihood that leaders are punished when they fail to achieve favorable outcomes. A variety of robustness checks and tests to address endogeneity provide strong evidence for the robustness of these results.

This study has several important implications for scholarship on civil war and for policymakers working towards peaceful settlement of the world’s internal conflicts. First, by focusing on leaders, this paper demonstrates that existing explanations focused on dyad or country-level factors are valuable but incomplete. Rebel and state leaders have strong personal incentives to avoid punishment during civil war, and importantly, these incentives are independent of group-level goals. At times, leaders’ incentives will eclipse conflict-level factors, causing conflict trajectory to differ from that predicted by existing dyad and country-level theories. Thus, treating rebel groups and governments as unitary actors is a critical limitation in existing research, which this project overcomes as the first to examine leaders’ impact on civil war outcomes.

Second, this project has implications for a variety of other civil war processes. Leader responsibility is likely to not only affect conflict outcomes, but also civil war duration, severity, and the likelihood of negotiations, as responsible leaders will extend their wars, fight harder, and avoid making conciliatory gestures in the hope of avoiding punishment. Further, this project has important implications for theories of commitment problems in civil war; variation in vulnerability to punishment likely generates variation in the severity of commitment problems, with responsible leaders particularly likely to have difficulty making credible commitments to
peace. This may, in turn, affect the sustainability of civil war settlements. This project, therefore, has implications for many aspects of civil conflict behavior.

Third, this project makes important data contributions by developing an original dataset of civil war leaders, 1980-2011. It provides information on leader tenure, responsibility, and post-tenure fate. Additionally, it develops a novel coding scheme for war outcomes that accounts for the favorability of the outcome for each warring actor. These new data are compatible with leading datasets on civil war (i.e. UCDP and NSA), and can therefore be easily used in future analyses to examine leaders’ roles in a variety of conflict processes.

Finally, this project has important implications for policy-makers. It demonstrates the importance of rebel and state leaders in civil war settlement processes, showing that it is not just the political goals of the group that must be addressed, but also the personal security concerns of responsible leaders, in order to successfully end civil conflict. This implies that the international community’s mediation efforts must address leaders’ personal security concerns in order to be effective. Conciliatory offers towards responsible leaders are likely to be unpalatable to a variety of domestic and international actors, however, suggesting that the very situations most in need of mediation are likely to be the most difficult cases to resolve. Thus, the ripest moments for civil war resolution may occur only once non-responsible leaders take power.
References

Figure 1: Logit Results for War Outcomes

Model 1: Extreme War Outcomes
- Leader Responsibility
- Relative Strength
- Multiple Dyads
- Rebel Alliance Duration (ln)
- Mediation
- External Troops
- Incompatibility
- Leader Conf Duration (ln)
- Rebel Political Wing
- Democracy
- Constant

Model 2: Political Concessions

Coefficient Estimates

N = 573 (Model 1), 581 (Model 2)
95% Confidence Intervals Reported
Figure 2: Substantive Impact of Leader Responsibility

A. Predicted Probabilities
By Leader Responsibility for the War

B. First Differences
Baseline: Non-Responsible Leaders

Note: 95% Confidence Intervals Reported
Figure 3: Change in Predicted Probability of Leader Punishment

Impact of Leader Responsibility, Conditional on War Performance

Note: First Differences with 95% Confidence Intervals Reported
Baseline: Non-Responsible Leaders